муниципальное бюджетное общеобразовательное учреждение городского округа Тольятти «Школа № 79»

ПРИНЯТО на заседании педагогического совета протокол № 1 от 29.08.18

Рабочая программа

платных дополнительных образовательных услуг «Информатика в играх и задачах» (научно- техническое направление)

4 класс

I. Пояснительная записка

Как правило, информационные и коммуникационные технологии (ИКТ) ассоциируются передним краем научно-технического прогресса, высококвалифицированной творческой деятельностью, с современными профессиями, требующими развитого мышления, с интеллектоёмкой экономикой. Темпы качественного развития компьютерной техники и ИКТ не имеют прецедентов в истории. Основу создания и использования информационных и коммуникационных технологий – одного из наиболее технологических достижений современной цивилизации информатика. Информатика, информационные и коммуникационные технологии оказывают существенное влияние на мировоззрение и стиль жизни современного человека. Общество, в котором решающую роль играют информационные процессы, свойства информации, информационные и коммуникационные технологии, – реальность настоящего времени.

Умение использовать информационные и коммуникационные технологии в качестве инструмента в профессиональной деятельности, обучении и повседневной жизни во многом определяет успешность современного человека. Особую актуальность для школы имеет информационно-технологическая компетентность учащихся применении образовательному процессу. другой стороны, развитие информационнокоммуникационных технологий и стремление использовать ИКТ для максимально возможной автоматизации своей профессиональной деятельности неразрывно связано с информационным моделированием объектов и процессов. В процессе информационных моделей надо уметь, анализируя объекты моделируемой области действительности, выделять их признаки, выбирать основания для классификации и группировать объекты по классам, устанавливать отношения между классами (наследование, включение, использование), выявлять действия объектов каждого класса и описывать эти действия с помощью алгоритмов, связывая выполнение алгоритмов с изменениями значений выделенных ранее признаков, описывать логику рассуждений в моделируемой области для последующей реализации её во встроенных в модель алгоритмах системы искусственного интеллекта. После завершения анализа выполняется проектирование и синтез модели средствами информационных и коммуникационных технологий. Все перечисленные умения предполагают наличие развитого логического и алгоритмического мышления. Но если навыки работы с конкретной техникой в принципе можно приобрести непосредственно на рабочем месте, то мышление, не развитое в определённые природой сроки, так и останется неразвитым. Опоздание с развитием мышления – это опоздание навсегда.

Каждый курс вносит свой специфический вклад в получение результата обучения в начальной школе, включающего личностные качества учащихся, освоенные универсальные учебные действия, опыт деятельности в предметных областях и систему основополагающих элементов научного знания, лежащих в основе современной картины мира. Курс «Информатика и ИКТ» предъявляет особые требования к развитию в начальной школе логических универсальных действий и освоению информационно-коммуникационных технологий в качестве инструмента учебной и повседневной деятельности учащихся. В соответствии со своими потребностями информатика предлагает и средства для целенаправленного развития умений выполнять универсальные логические действия и для освоения компьютерной и коммуникационной техники как инструмента в учебной и повседневной деятельности. Освоение информационно-коммуникационых технологий как инструмента образования предполагает личностное развитие школьников, придаёт смысл изучению ИКТ, способствует формированию этических и правовых норм при работе с информацией.

II. Общая характеристика учебного процесса

К основным результатам изучения информатики и ИКТ в общеобразовательной школе относятся:

- освоение учащимися системы базовых знаний, отражающих вклад информатики в формирование современной научной картины мира, роль информационных процессов в обществе, биологических и технических системах;
- овладение умениями применять, анализировать, преобразовывать информационные модели реальных объектов и процессов, используя при этом информационные и коммуникационные технологии (ИКТ), в том числе при изучении других школьных дисциплин;
- развитие познавательных интересов, интеллектуальных и творческих способностей путём освоения и использования методов информатики и средств ИКТ при изучении различных учебных предметов;
- воспитание ответственного отношения к соблюдению этических и правовых норм информационной деятельности;
- приобретение опыта использования информационных технологий в индивидуальной и коллективной учебной и познавательной, в том числе проектной, деятельности.

В курсе информатики и ИКТ для начальной школы наиболее сконцентрировано основное внимание на развитии логического и алгоритмического мышления школьников и на освоении ими практики работы на компьютере.

Уроки, наиеленные на развитие логического и алгоритмического мышления школьников:

- не требуют обязательного наличия компьютеров;
- проводятся преимущественно учителем начальной школы, что создаёт предпосылки для переноса освоенных умственных действий на изучение других предметов.

Логико-алгоритмический компонент

Данный компонент курса информатики и ИКТ в начальной школе предназначен для развития логического, алгоритмического и системного мышления, создания предпосылок успешного освоения учащимися инвариантных фундаментальных знаний и умений в областях, связанных с информатикой, которые вследствие непрерывного обновления и изменения в аппаратных и программных средствах выходят на первое место в формировании научного информационно-технологического потенциала общества.

Цели изучения логико-алгоритмических основ информатики в начальной школе:

1) развитие у школьников навыков решения задач с применением таких подходов к решению, которые наиболее типичны и распространены в областях деятельности, традиционно относящихся к информатике:

- применение формальной логики при решении задач построение выводов путём применения к известным утверждениям логических операций «если ..., то ...», «и», «или», «не» и их комбинаций «если ... и ..., то ...»;
- алгоритмический подход к решению задач умение планировать последовательность действий для достижения какой-либо цели, а также решать широкий класс задач, для которых ответом является не число или утверждение, а описание последовательности действий;
- системный подход рассмотрение сложных объектов и явлений в виде набора более простых составных частей, каждая из которых выполняет свою роль для функционирования объекта в целом; рассмотрение влияния изменения в одной составной части на поведение всей системы;
- объектно-ориентированный подход постановка во главу угла объектов, а не действий, умение объединять отдельные предметы в группу с общим названием, выделять общие признаки предметов этой группы и действия, выполняемые над этими предметами; умение описывать предмет по принципу «из чего состоит и что делает (можно с ним делать)»;
- 2) расширение кругозора в областях знаний, тесно связанных с информатикой: знакомство с графами, комбинаторными задачами, логическими играми с выигрышной стратегией («начинают и выигрывают») и некоторыми другими. Несмотря на ознакомительный подход к данным понятиям и методам, по отношению к каждому из них предполагается обучение решению простейших типовых задач, включаемых в контрольный материал, т. е. акцент делается на развитии умения приложения даже самых скромных знаний;
- 3) создание у учеников навыков решения логических задач и ознакомление с общими приёмами решения задач «как решать задачу, которую раньше не решали» с ориентацией на проблемы формализации и создания моделей (поиск закономерностей, рассуждения по аналогии, по индукции, правдоподобные догадки, развитие творческого воображения и др.).

Говоря об общеобразовательной ценности курса информатики, мы полагаем, что умение любого человека выделить в своей предметной области систему понятий, представить их в виде совокупности атрибутов и действий, описать алгоритмы действий и схемы логического вывода не только помогает автоматизации действий (всё, что формализовано, может быть компьютеризовано), но и служит самому человеку для повышении ясности мышления в своей предметной области.

В курсе выделяются следующие разделы:

- описание объектов атрибуты, структуры, классы;
- описание поведения объектов процессы и алгоритмы;
- описание логических рассуждений высказывания и схемы логического вывода;

- применение моделей (структурных и функциональных схем) для решения разного рода задач.

Материал этих разделов изучается на протяжении всего курса концентрически, так, что объём соответствующих понятий возрастает от класса к классу.

III. Описание места программы в учебном плане

Логико-алгоритмический компонент

Логико-алгоритмический компонент относится к предметной области «Математика и информатика» и предназначен для изучения в часы, определяемые участниками образовательного процесса. В МБУ «Школа№79» этот курс проходит в рамках платных дополнительных образовательных услуг по желанию родителей (законных представителей) в 4 классе. Объем рабочих часов составляет 30 часов в год, по 1 разу в неделю.

IV. Описание ценностных ориентиров содержания программы

Логико-алгоритмический компонент

Развитие логического, алгоритмического и системного мышления, создание предпосылок успешного освоения учащимися инвариантных фундаментальных знаний и умений в областях, связанных с информатикой, способствует ориентации учащихся на формирование самоуважения и эмоционально-положительного отношения к себе, на восприятие научного познания как части культуры человечества.

Ориентация курса на осознание множественности моделей окружающей действительности позволяет формировать не только готовность открыто выражать и отстаивать свою позицию, но и уважение к окружающим, умение слушать и слышать партнёра, признавать право каждого на собственное мнение.

V. Личностные, метапредметные и предметные результаты освоения учебного курса

Личностные результаты

К личностным результатам освоения информационных и коммуникационных технологий как инструмента в учёбе и повседневной жизни можно отнести:

- критическое отношение к информации и избирательность её восприятия;
- уважение к информации о частной жизни и информационным результатам других людей;
- осмысление мотивов своих действий при выполнении заданий с жизненными ситуациями;
- начало профессионального самоопределения, ознакомление с миром профессий, связанных с информационными и коммуникационными технологиями.

Метапредметные результаты

Логико-алгоритмический компонент

Регулятивные универсальные учебные действия:

- планирование последовательности шагов алгоритма для достижения цели;
- поиск ошибок в плане действий и внесение в него изменений.

Познавательные универсальные учебные действия:

- моделирование преобразование объекта из чувственной формы в модель, где выделены существенные характеристики объекта (пространственнографическая или знаково-символическая);
- анализ объектов с целью выделения признаков (существенных, несущественных);
- синтез составление целого из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
- выбор оснований и критериев для сравнения, сериации, классификации объектов;
- подведение под понятие;
- установление причинно-следственных связей;
- построение логической цепи рассуждений.

Коммуникативные универсальные учебные действия:

- аргументирование своей точки зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов;
- выслушивание собеседника и ведение диалога;
- признавание возможности существования различных точек зрения и права каждого иметь свою.

Предметные результаты

Логико-алгоритмический компонент

В результате изучения материала учащиеся должны уметь:

- определять составные части предметов, а также состав этих составных частей;
- описывать местонахождение предмета, перечисляя объекты, в состав которых он входит (по аналогии с почтовым адресом);
- заполнять таблицу признаков для предметов из одного класса (в каждой ячейке таблицы записывается значение одного из нескольких признаков у одного из нескольких предметов);

- выполнять алгоритмы с ветвлениями; с повторениями; с параметрами; обратные заданному;
- изображать множества с разным взаимным расположением;
- записывать выводы в виде правил «если ..., то ...»; по заданной ситуации составлять короткие цепочки правил «если ..., то ...».

VI. Содержание программы

Логико-алгоритмический компонент

Алгоритмы. Вложенные алгоритмы. Алгоритмы с параметрами. Циклы: повторение указанное число раз; до выполнения заданного условия; для перечисленных параметров.

Объекты. Составные объекты. Отношение «состоит из». Схема (дерево) состава. Адреса объектов. Адреса компонентов составных объектов. Связь между составом сложного объекта и адресами его компонентов. Относительные адреса в составных объектах.

Логические рассуждения. Связь операций над множествами и логических операций. Пути в графах, удовлетворяющие заданным критериям. Правила вывода «если ..., то ...». Цепочки правил вывода. Простейшие графы «и – или».

Применение моделей (схем) для решения задач. Приёмы фантазирования (приём «наоборот», «необычные значения признаков», «необычный состав объекта»). Связь изменения объектов и их функционального назначения. Применение изучаемых приёмов фантазирования к материалам разделов 1–3 (к алгоритмам, объектам и др.).

VII. Тематическое планирование и основные виды деятельности учащихся

Логико-алгоритмический компонент

Тема	Число	Основные виды учебной		
	часов	деятельности учащихся		
Алгоритмы				
Вложенные алгоритмы. Алгоритмы с параметрами.		Составлять и записывать		
	4	вложенные алгоритмы.		
		Выполнять, составлять алгоритмы		
		с ветвлениями и циклами и		
Hyvery v. Wormon over a weep over a work of the		записывать их в виде схем и в		
Циклы: повторение указанное число раз;		построчной записи с отступами.		
до выполнения заданного условия; для	4			
перечисленных параметров.		Выполнять и составлять		
		алгоритмы с параметрами.		
Группы (классы) объектов				
Составные объекты. Отношение «состоит	2	Определять составные части		
из». Схема (дерево) состава.	2	предметов, а также состав этих		
, , ,		составных частей, составлять		
Адреса объектов. Адреса компонентов		схему состава (в том числе		
составных объектов.	2	многоуровневую).		
	2			
Связь между составом сложного объекта и		Описывать местонахождение		

адресами его компонентов. Относительные		предмета, перечисляя объекты, в
адреса в составных объектах.		состав которых он входит (по
	3	аналогии с почтовым адресом).
		Записывать признаки и действия
		всего предмета или существа и
		его частей на схеме состава.
		Заполнять таблицу признаков для
		предметов из одного класса (в
		каждой ячейке таблицы
		записывается значение одного из
		нескольких признаков у одного из
		нескольких предметов).
Логические	г рассужде	?н ия
		Изображать на схеме
		совокупности (множества) с
		разным взаимным
		расположением: вложенность,
		объединение, пересечение.
		Определять истинность
	3	высказываний со словами «НЕ»,
Связь операций над совокупностями	3	«И», «ИЛИ».
(множествами)и логических операций.		
		Строить графы по словесному
	2	описанию отношений между
	2	предметами или существами.
Пути в графах, удовлетворяющие		
заданным критериям.		Строить и описывать пути в
	2	графах.
Правила вывода «если, то». Цепочки	_	
правил вывода.		Выделять часть рёбер графа по
		высказыванию со словами «НЕ»,
Простейшие графы «и – или».	2	«И», «ИЛИ».
	_	
		Записывать выводы в виде правил
		«если, то»; по заданной
		ситуации составлять короткие
		цепочки правил «если, то»;
		составлять схемы рассуждений из
		правил «если, то» и делать с
		их помощью выводы.
Применение моделей	(схем) для	-,
Приёмы фантазирования (приём		Придумывать и описывать
«наоборот», «необычные значения	_	предметы с необычным составом
признаков», «необычный состав объекта»).	3	и возможностями. <u>Находить</u>
		действия с одинаковыми
Связь изменения объектов и их		названиями у разных предметов.
функционального назначения. Применение	_	Придумывать и описывать
изучаемых приёмов фантазирования к	3	объекты с необычными
материалам разделов 1–3 (к алгоритмам,		признаками. Описывать с
объектам и др.).		помощью алгоритма действие,

обратное заданному. Соотносить
действия предметов и существ с
изменением значений их
признаков.

VIII. Материально-техническое обеспечение образовательного процесса

Логико-алгоритмический компонент

Для реализации принципа наглядности в кабинете доступны изобразительные наглядные пособия: плакаты с примерами схем и разрезной материал с изображениями предметов и фигур.

Другим средством наглядности служит оборудование для мультимедийных демонстраций (компьютер и медиапроектор). Оно благодаря Интернету и единой коллекции цифровых образовательных ресурсов (например, http://school-collection.edu.ru/) позволяет использовать в работе учителя набор дополнительных заданий к большинству тем курса «Информатика».